| NRC FORM 618 | | | U.S. NUCLEAR REG | ULATORY | COMM | ISSION | | | |-----------------------------------|-------------------|-----------------|----------------------------------|---------|------|--------|--|--| | 16.1.
10.0FR | CERTIFICA | TE OF COMPLI | ANCE | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | 1 a CERTIFICATE NUMBER | D REVISION NUMBER | c DOCKET NUMBER | d. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | 9288 | 88 | 71-9288 | USA/9288/B(U)F-96 | 11 | 0= | 6 | | | #### 2 PREAMBLE - a This certificate is issued to certify that the package (packaging and contents) described in Item 5 below meets the applicable safety standards set forth in Title 10, Code of Federal Regulations, Part 71. "Packaging and Transportation of Radioactive Material." - b. This certificate does not relieve the consignor from compliance with any requirement of the regulations of the U.S. Department of Transportation or other applicable regulatory agencies, including the government of any country through or into which the package will be transported. - 3 THIS CERTIFICATE IS ISSUED ON THE BASIS OF A SAFETY ANALYSIS REPORT OF THE PACKAGE DESIGN OR APPLICATION. - a. ISSUED TO (Name and Address) Columbiana Hi Tech, LLC 1802 Fairfax Road Greensboro, NC 27407 b. TITLE AND IDENTIFICATION OF REPORT OR APPLICATION Columbiana Hi Tech, LLC, consolidated applica ion dated February 27, 2006, as supplemented #### 4 CONDITIONS This certificate is conditional upon fulfilling the requirements of 10 CFR Part 71, as applicable, and the conditions specified below 5 - (a) Packaging - (1) Model No.: CHT-OP-TU - (2) Description A shipping container for uranium oxide pellets, powder, and uranium-bearing materials. The package is roughly cubical and is approximately 45-inches x 45-inches x 62-inches high. The package has four internal sleeves in which Oxide Vessels are inserted. The outer shell of the package is constructed of 11-gauge mild or stainless steel and the space between the outer shell and the sleeves are filled with fire retardant, closed cell phenolic or polyurethane foam. The sleeves are constructed of 11-gauge mild or stainless steel with an inner diameter of 10-1/4 inches. The sleeves are closed with twelve 1/2-inch-diameter bolts using an outer Id assembly on a 1/16-inch-thick neoprene or silicone gasket. The outer lid assembly is filled with fire-retardant, closed cell phenolic or polyurethane foam. The Oxide Vessel is constructed of series 300 stainless steel, with an inner diameter of either 6, 7.5, or 8 inches. The Oxide Vessel is closed by eight 1/2-inch-diameter bolts on a 5/8-inch-thick stainless steel lid with a double O-ring seal. The O-ring seal material is either silicon rubber, fluorosilicon or fluorocarbon (viton). A pellet shipping assembly is used within the Oxide Vessel for certain shipments. | T. SPORTS | NRC FORM 618 | Andreas and the second | name (na lama n. lama) namen nam | U S. NUCLEAR REGI | JLATORY | COMMI | SSION | | | |-----------|-----------------------------------|---|--|---------------------------------|---------|-------|-------|--|--| | | CERTIFICATE OF COMPLIANCE | | | | | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | | 1 a CERTIFICATE NUMBER | b. REVISION NUMBER | c DOCKET NUMBER | d PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | | 9288 | 8 | 71-9288 | USA/9288/B(U)F-96 | 2 | CF | 6 | | | #### 5 (a) (2) Description (Continued) The approximate dimensions and weights of the package are as follows: Sleeve inside diameter 10 1/4-inches Oxide Vessel inside diameter 6. 7.5. or 8 inches Oxide Vessel inside height 40 3/4-inches Overall package dimensions width 45 inches length 45 inches height 62 inches Maximum contents weight per Oxide Vessel 402 pounds Maximum empty transport weight including four empty Oxide Vessels 2576 pounds Maximum loaded package weight (with four filled Oxide Vessels) 3757 pounds #### (3)Drawings The packaging is constructed and assembled in accordance with Columbiana Hi Tech Drawing Nos.: OP-TU-SAR, Rev. 12, Sheets 1 of 2 and 2 of 2; OP-TU-A2, Rev. 12, Sheet 1 of 1; OP-TU-A3, Rev. 12, Sheet 1 of 1; OP-TU-A4, Rev. 12, Sheet 1 of 1; and, OPTU-V-AB1, Rev. 8, Sheets 1 of 2 and 2 of 2. The Oxide Vessel Pellet Shipping Assembly is constructed and assembled in accordance with ARIVA NP, Inc., Drawing No. 9046816, Rev. 1. | NRC FORM 618 | , permentajo jugo quantidam superior antici del medi del mentro antici del medio mineral del medio del medio d | | U.S. NUCLEAR REG | ULATOR' | Y COMM | ISSION | | | |-----------------------------------|--|-----------------|---------------------------------|---------|--------|--------|--|--| | CERTIFICATE OF COMPLIANCE | | | | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | 1 a CERTIFICATE NUMBER | b REVISION NUMBER | c DOCKET NUMBER | d PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | 9288 | 8 | 71-9288 | USA/9288/B(U)F-96 | 3 | 0 = | 6 | | | # 5.(b) Contents # (1) Type and form of material Uranium-bearing compounds in solid form, heterogenous or homogenous (i.e., pellets and powder). The contents may include up to 1000 grams of polyethylene or other plastics as packaging, waste or impurities per Oxide Vessel (4000 grams per package), provided that (1), the total water equivalent of the plastic is less than 1307 grams per Oxide Vessel (5228 grams per package); and, (2) the decay heat is less than 0.068 W/m³. Materials with a decay heat greater than 0.068 W/m³ may not be packaged using hydrogen bearing plastics, and may only use non-hydrogen bearing plastics such as TeflonTM (polytetrafluoroethylene or PTFE) or metallic containers. In addition, the contents are limited to: - A. Unirradiated uranium oxide powder enriched to no more than 5.0 weight percent in the U-235 isotope - B. Unirradiated uranium oxide pellets or a mixture of pellets and powder enriched to no more than 5.0 weight percent in the U-235 isotope. - C. Reprocessed uranium oxide powder enriched to no more than 5.0 weight percent in the U-235 isotope, with limits specified in Table 1. Table 1: Allowable Content for Shipment of Reprocessed Uranium Oxide | | Maximum Content | | | | | | |--------------------------------|---|----------------|-----------------|--|--|--| | Isotope Type A | Type A | Type B Level I | Type B Level II | | | | | U-232 (g/gU) | Mixtures of isotopes shall be evaluated and designated as a Type A quantity per 10 CFR Part | 2.00E-09 | 5.00E-09 | | | | | U-234 (g/gU) | | 2.00E-03 | 2.00E-03 | | | | | U-235 (g/gU) | | 5.00E-02 | 5.00E-02 | | | | | U-236 (g/gU) | | 2.50E-02 | 2.50E-01 | | | | | Np-237 (g/gU) | 71 Appendix A. The maximum | 1.66E-06 | 5.00E-03 | | | | | Pu-238 (g/gU) | enrichment per package is 5 | 6.20E-11 | 4.00E-08 | | | | | Pu-239 (g/gU) | weight per cent | 3.04E-09 | 3.04E-09 | | | | | Pu-240 (g/gU) | 0. | 3.04E-09 | 6.00E-09 | | | | | Gamma Emitters
(MeV-Bq/kgU) | | 6.38E+05 | 1.91E+06 | | | | | NF | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION | | | | | | | | | | |----|---|-------------------|-----------------|----------------------------------|------|-----|-------|--|--|--| | | CERTIFICATE OF COMPLIANCE | | | | | | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | | 1 | a CERTIFICATE NUMBER | b REVISION NUMBER | c DOCKET NUMBER | a. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | | | 9288 | 88 | 71-9288 | USA/9288/B(U)F-96 | 4 | 0 = | 6 | | | | # 5. (b) (1) Type and Form of Material (Continued) - D. Reprocessed uranium oxide pellets or a mixture of pellets and powder enriched to no more than 5.0 weight percent in the U-235 isotope, with the limits specified in Table 1. - E. Homogeneous (powder or crystalline form) uranium-bearing materials enriched to 5.0 weight percent in the U-235 isotope in the form of solids, or solidified or dewatered materials. Uranium compounds must have a ratio of non-fissile atoms to uranium atoms greater than two (2) and the density of these compounds is less than 10.96 g/cm³ (density of UO₂). Material such as U-metal, U-metal alloys, or uranium hydrides (e.g., UH_x) m₃y not be shipped. Uranium-bearing materials may include oxides, carbides, silicates or other compounds of uranium. Uranium-bearing materials may be moderated by graphite to any degree. Compounds may be mixed with other non-fissile materials with the exception of beryllium or hydrogenous material enriched in deuterium. Materials with a hydrogen density greater than water must be excluded, except for the allowance provided by Condition No. 5.(b)(1). F. Heterogeneous (pellets or previously pelletized materials) uranium-bearing materials enriched to 5.0 weight percent in the U-235 isotope in the form of solids, or solidified or dewatered materials. Uranium compounds must have a ratio of non-fissile atoms to uranium atoms greater than two (2) and the density of these compounds is less than 10.96 g/cm³ (density of UO₂). Material such as U-metal, U-metal alloys, or uranium hydrides (e.g., UHχ) may not be shipped. Uranium-bearing materials may include oxides, carbides, silicates or other compounds of uranium. Uranium-bearing materials may be moderated by graphite to any degree. Compounds may be mixed with other non-fissile materials with the exception of beryllium or hydrogenous material enriched in deuterium. Materials with a hydrogen density greater than water must be excluded, except for the allowance provided by Condition No. 5.(b)(1). | NR | RC FORM 618 | | | U.S. NUCLEAR REG | ULATORY | COMM | ISSION | | | | |----|-----------------------------------|-------------------|------------------|---------------------------------|---------|------|--------|--|--|--| | | CERTIFICATE OF COMPLIANCE | | | | | | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | | 1 | a CERTIFICATE NUMBER | & REVISION NUMBER | c. DOCKET NUMBER | d PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | | | 9288 | 8 | 71-9288 | USA/9288/B(U)F-96 | 5 | 0 = | 6 | | | | 5. (b)(2) Maximum quantity of material per package The maximum allowable contents heat generation rate is 1.0 BTU/hr/ft³ (10.3 W/m³). The maximum weight of contents, including the uranium compounds and all packaging materials within the Oxide Vessel, is 402 pounds per 8-inch, 7.5-inch, or 6-inch diameter Oxide Vessel, and a maximum of 1608 pounds per package. For contents described in Condition Nos. 5(b)(1)(B), 5.(b)(1)(D), and 5.(b)(1)(F), the Oxide Vessel Pellet Shipping Assembly, as described in Condition No. 5(a)(3), must be used within the 8-inch diameter Oxide Vessel. The Oxide Vessel Pellet Shipping Assembly is not required when using the 7.5-inch, or 6-inch diameter Oxide Vessel. (c) Criticality Safety Index 2.0 - 6. In addition to the requirements of Subpart G of 10 CFR Part 71: - (a) The package must be prepared for shipment and operated in accordance with the Operating Procedures in Section 7 of the application, as supplemented. - (b) Each packaging must be acceptance tested and maintained in accordance with the Acceptance Tests and Maintenance Program in Section 8 of the application, as supplemented. - 7. Transport by air of fissile material is not authorized. - 8. The package authorized by this certificate is hereby approved for use under the general license provisions of 10 CFR 71.17. - 9. Revision No. 7 of this certificate may be used until August 31, 2008. - 10. Expiration date: March 31, 2010. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION | | | | | | | | | | |---|-------------------|------------------|---------------------------------|------|-----|-------|--|--|--| | CERTIFICATE OF COMPLIANCE | | | | | | | | | | | FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | | | | 1 a CERTIFICATE NUMBER | b REVISION NUMBER | c. DOCKET NUMBER | d PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | | | 9288 | 8 | 71-9288 | USA/9288/B(U)F-96 | 6 | OF. | 6 | | | | # **REFERENCES** Columbiana Hi Tech, LLC, consolidated application dated February 27, 2006. Supplements dated: April 10, 2006; and July 17 and August 29, 2007. FOR THE U.S. NUCLEAR REGULATORY COMMISSION Robert A. Nelson, Chief Licensing Branch Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards Date: September 26, 2007 # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 # SAFETY EVALUATION REPORT Model No. CHT-OP-TU Package Certificate of Compliance No. 9288 Revision No. 8 #### SUMMARY By application dated July 17, 2007, as supplemented August 29, 2007, Columbiana Hi Tech, LLC, requested an amendment to Certificate of Compliance No. 9288, for the Model No. CHT-OP-TU package. Columbiana requested that the authorized contents be revised to allow heterogeneous uranium oxide compounds, e.g., pellets, to be shipped within the 8-inch diameter oxide (containment) vessel, provided that an internal insert is used. The applicant provided: (1) a drawing that shows the oxide vessel insert, called the pellet shipping assembly; (2) a criticality evaluation for the package to show that the fissile contents would remain subcritical under normal and hypothetical accident conditions; and (3) revised operating and maintenance instructions that address use of the pellet shipping assembly. The contents authorized for transport in the package have been revised, as requested by the applicant. Based on the statements and representations in the application, the staff agrees that this change does not affect the ability of the package to meet the requirements of 10 CFR Part 71. # **EVALUATION** #### **GENERAL INFORMATION** The applicant requested that the certificate be amended to authorize heterogeneous uranium oxide compounds to be shipped within the 8-inch diameter oxide vessel. Previously, only homogenous powders could be shipped within the 8-inch diameter oxide vessel. Heterogeneous compounds are pellets, previously pelletized materials, or mixtures of pellets and powders. Previously, heterogeneous compounds were authorized for shipment only in the 7.5-inch or 6-inch diameter oxide vessels. This is because results of criticality analyses for heterogeneous materials in the 8-inch diameter oxide vessel were not within the upper safety limit. # **Packaging** The applicant provided the design of an insert, called the pellet shipping assembly, to be used within the 8-inch diameter oxide vessel. This shipping configuration (the pellet shipping assembly within the 8-inch diameter oxide vessel) would result in a loading with nuclear reactivity similar to that of the 7.5-inch diameter oxide vessel. The insert was designed to reduce the effective cross sectional void area of the 8-inch diameter oxide vessel to that of the 7.5-inch diameter oxide vessel. The applicant submitted a drawing that shows the pellet shipping assembly (Areva NP Inc., Drawing No. 9046816, Rev. 001). The pellet shipping assembly consists of two main parts – a lower and an upper assembly, both constructed of aluminum. Pellets are placed on trays and positioned in the lower assembly. Stainless steel spacer plates are used to separate multiple stacks of trays and to limit the stack length. Aluminum spacer blocks are used for partial shipments. The upper assembly is positioned on the top assembly and may be secured with latches. ## **CRITICALITY EVALUATION** # **Design for Criticality Safety** The oxide vessel pellet shipping assembly is designed to ensure that the effective cross sectional area within the 8-inch diameter oxide vessel is reduced to a maximum of that of the 7.5-inch-diameter oxide vessel. The engineering drawing of the pellet shipping assembly specifies minimum aluminum plate thicknesses and lengths for the upper and lower assemblies. Criticality safety does not rely on the pellets remaining within the pellet shipping assembly, or remaining between pellet trays, but relies on the presence of the aluminum plates of the upper and lower assemblies to displace water moderation. The applicant presented a series of criticality calculations to show that the new loading configuration meets the requirements for fissile material packages. The approach taken by the applicant was to show that the presence of the pellet shipping assembly aluminum components was equivalent to reducing the oxide vessel diameter from 8 inches to 7.5 inches. The 7.5-inch diameter oxide vessel had previously been shown to be critically safe with pellets, for a single package and for arrays of packages under normal conditions of transport and hypothetical accident conditions. The applicant used the SCALE 4.3 code package, with the 44-group cross-section library, to perform the criticality calculations. ## Single Package Analysis To demonstrate that a single package remains adequately subcritical the applicant presented the results previously performed for pellets within the 7.5-inch diameter oxide vessel. The results (Table 6.2 of the previous application) were well within the upper safety limit. In addition, to demonstrate that significant margin exists, the applicant provided an analysis for pellets within the unsleeved (i.e., without the pellet shipping assembly) 8-inch diameter oxide vessel. The maximum k-eff for pellets within the 8-inch oxide vessel was 0.8264, including bias and uncertainty, assuming an undamaged, flooded package, and 0.8332, assuming a damaged, flooded package (p. 6.8.2-3 of the application). The single package analysis considered water within the oxide vessel, which the applicant refers to as the "off-normal condition" model. The staff agrees that the single package analysis is adequate and shows that the package meets the requirements of 10 CFR 71.55. ## Arrays of Packages under Normal Conditions of Transport For the normal conditions array, the criticality models assumed pellets with no internal water moderation, but did consider 1000 grams of polyethylene, the maximum mass of wrapping materials authorized within the oxide vessels. For the normal conditions arrays, previous results for the 7.5-inch diameter oxide vessel were within the upper safety limit (Table 6.2 of the previous application). For the unsleeved 8-inch diameter oxide vessel, the maximum k-eff was 0.6651 (Table 6.8.2-1 of the application). The analyses assumed a 5x5x5 array of undamaged packages. # Arrays of Packages under Hypothetical Accident Conditions Previous results demonstrated that the evaluation of arrays of damaged packages was the most limiting with respect to criticality safety. For the current analysis, the applicant provided a number of analyses to show that the proposed configuration, with pellets when packaged with a pellet shipping assembly within the 8-inch diameter oxide vessel, met criticality safety requirements. The analyses considered a 4x4x3+2 array of damaged packages. The staff evaluated the ability of the aluminum pellet shipping assembly to retain sufficient structural integrity to assure no significant rearrangement of the aluminum material within the oxide vessel that could affect criticality safety. The staff concluded that the aluminum plates would not buckle under drop test conditions. In addition, the criticality safety of the fissile material does not rely on the pellets remaining within the pellet shipping assembly For the array of damaged packages, the applicant evaluated the use of an aluminum sleeve that simply reduced the diameter of the oxide vessel from 8 inches to 7.5 inches. The analyses assumed optimum moderation within the oxide vessels, considering moderation by water and 1000 grams of plastic. The models considered a 1-inch gap at the top and bottom of the oxide vessel, as well as a 1-inch gap in the middle of the oxide vessel, with the pellets within the gaps. The maximum k-eff was 0.9458 (Table 6.8.2-1), which is within the upper safety limit of 0.9473. The applicant performed additional analyses to show that the geometry of the sleeve, or insert, was not important with respect to criticality safety. These analyses considered a right circular cylinder of aluminum, with a cross sectional area of 40 cm², which could be positioned within the center of the oxide vessel, or at the edge of the oxide vessel. This is equivalent to a 3.58-cm radius aluminum rod. The calculated k-eff for the case where the rod was at the center of the oxide vessel was 0.9036, and the k-eff for the rod at the edge was 0.9281, which are both within the upper safety limit. The results of the calculations were summarized in Table 6.8.2-1. The staff reviewed the applicant's criticality analyses for the single package and arrays of packages under normal conditions of transport and hypothetical accident conditions. In addition, the staff performed confirmatory calculations for a selected group of analyses considered to be the most limiting. The staff used the SCALE 5.1 code package with the 238-group cross-section library to model and evaluate the array of damaged packages. The staff's analysis considered: (1) optimum fuel to moderator within each oxide vessel, including 1000 grams of polyethylene within each oxide vessel; (2) void between packages in the arrays; (3) the oxide vessel with a reduced diameter; and (4) a 4x4x3+2 array of packages. The staff's results were consistent with the applicant's. #### **Sensitivity Evaluation** A sensitivity study was performed to demonstrate that the analyses considered the most reactive pellet configuration. The pellets were evaluated over a range of diameters and pitch. This was to determine the optimum water to fuel volume ratio. The sensitivity of external moderation was also evaluated. Optimum external moderation was **det**ermined to be a water volume fraction of 0.0001; additional moderation between packages **red**uced the reactivity of the array. The tilting of the oxide vessels within the package, due to accident conditions, was also considered, and shown to be negligible. Neoprene pads are used within the oxide vessels to provide a snug fit for the pellet shipping assembly. The applicant de**mon**strated that the presence of the neoprene reduces the reactivity of the system. The **staff** agrees that the sensitivity analyses were appropriate for the criticality evaluation. # **Benchmarking Evaluation** The applicant presented additional benchmarking information and showed that the previously determined upper subcritical limit (USL) remains valid for the sleeved, 8-inch oxide vessel. While the staff does not agree with the statement that the previously established USL remains valid due to the reduction in cross-sectional area provided by the pellet shipping assembly (p. 6.8.2-1 of the application), the staff agrees that the applicant's benchmarking assessment (p. 6.8.2-5 of the application), and determination of the USL, were adequate. #### PACKAGE OPERATIONS The applicant provided a revised Section 7.0 of the application. The package operations were revised to address the use of the pellet shipping assembly within the 8-inch diameter oxide vessel for shipment of pellets and other heterogeneous contents. #### MAINTENANCE PROGRAM AND ACCEPTANCE TESTS The applicant provided a revised Section 8.0 of the application. The **maintenance** program was revised to address visual inspections of the pellet shipping assembly on a periodic basis. #### CONCLUSION The Certificate of Compliance has been revised, as requested by the applicant. Based on the request the following changes were made: Condition No. 5.(a)(2), "Description," was revised to include the pellet shipping assembly. Condition No. 5.(a)(3). "Drawings," was revised to include the following: The Oxide Vessel Pellet Shipping Assembly is constructed and assembled in accordance with AREVA NP, Inc., Drawing No. 9046816, Rev. 1. Condition No. 5.(b)(2), "Maximum quantity of material per package," was revised to authorize the new shipping configuration with the pellet shipping assembly for shipment of heterogeneous uranium compounds within the 8-inch diameter oxide vessel. In addition, the certificate was revised to clarify that the 402-pound limit per oxide vessel included all internal packaging materials (such as the pellet shipping assembly) and the radioactive contents. The revised Condition No. 5.(b)(2) reads: # 5. (b) (2) Maximum quantity of material per package The maximum allowable contents heat generation rate is 1.0 BTU/hr/ft³ (10.3 W/m³). The maximum weight of contents, including the uranium compounds and all packaging materials within the Oxide Vessel, is 402 pounds per 8-inch, 7.5-inch, or 6-inch diameter Oxide Vessel, and a maximum of 1608 pounds per package. For contents described in Condition Nos. 5.(b)(1)(B), 5.(b)(1)(D), and 5.(b)(1)(F), the Oxide Vessel Pellet Shipping Assembly, as described in Condition No. 5(a)(3), must be used within the 8-inch diameter Oxide Vessel. The Oxide Vessel Pellet Shipping Assembly is not required when using the 7.5-inch, or 6-inch diameter Oxide Vessel. Condition No. 8 of Revision No. 7 of the certificate was deleted, since the condition authorized an alternative Package Identification Number only until April 30, 2007. Condition No. 10 of the certificate authorizes the continued use of Revision No. 7 of the certificate for approximately one year. These changes do not affect the ability of the package to meet the requirements of 10 CFR Part 71. Revision No. 8, on September 26, 2007